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Abstract. In this paper we deal with the solution of the separable convex cost network flow problem. In
particular, we propose a parallel asynchronous version of the e-relaxation method and we prove theoretically its
correctness.

We present two implementations of the parallel method for a shared memory multiprocessor system, and we
empirically analyze their numerical performance on different test problems. The preliminary numerical results
show a good reduction of the execution time of the parallel algorithm with the respect to the sequential counterpart.
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1. Introduction

In this paper we consider the minimum cost flow problem with convex separable cost
function (MCCEF, for short). This problem has been widely studied because of its practical
and algorithmic importance, and a large number of algorithms have been proposed for its
solution.

They can be grouped into two different categories: exact methods by which the optimal
solution is obtained [1-3] and approximate methods that determine a solution which is
optimal within a certain user-defined tollerance [4-10].

In this paper we concentrate our attention on the approximate methods. All these methods
relax in some way the complementary slackness conditions and they differ in the strategy
used to move toward to optimality. Among them, the ¢-relaxation method [8-10] is one
of the most promising approach. It presents the same worst case theoretical complexity of
the other approximate methods, but it exhibits better computational performance, at least in
conventional computing settings [7, 8]. Furthermore, this method is very appealing since
it is potentially well suited to implementation on parallel computing systems.

The paper is organized as follows. In the Section 2, we introduce the MCCF problem and
the e-relaxation method. In Section 3, we present a corresponding parallel asynchronous
algorithm, which can be viewed as an extension of the method developed by Bertsekas and
Tsitsiklis [11] when the cost function is linear. In the same section we formally illustrate
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176 BERALDI, GUERRIERO AND MUSMANNO

the correctness of the parallel method, adapting the convergence proof given in [11] to the
convex cost function case.

In Section 4, we describe parallel implementations on a shared memory multiprocessor.
Finally, in Section 5, we present and discuss some computational results collected on a
large set of test problems.

2, The convex network flow problem

Given a directed graph G = (N, A), where N is the set of nodes with |N| = n and A is the
set of arcs with |A| = m, the MCCF problem can be formulated as follows:

min Y fi(xy) ¢))
(i,j)eA

st. Y xj— Y xi=s, VieN 2
{j:(i, )eA} {Jj:(,)eA)

where fi;: R — (—o0, +00], Y(i, j) € A, is a convex, closed, proper function (extended
real-valued, lower semicontinuous, not identically taking the value oo [4]); x;;, V(, j) €
A, represents the number of units of flow through the arc (i, j) from node i to node j.
Furthermore, s;, Vi € N, is the supply/demand of node i, depending whether its value is
greater/less than zero. We refer to constraints (2) as the conservation of flow constraints.

For each function fj;, we denote with [; and u;;, respectively, the left and right endpoints
of the effective domain Cy = {§ € R | f;(§) < oo}.

We make the following assumptions.

Assumption 2.1. The MCCF problem is feasible, that is, there exists at least one flow
vector x satisfying the flow conservation constraints (2) and its components x; belong to
C;, Vi, j) € A.

Assumption 2.2.  There exists at least one feasible flow vector x such that: f;; (x;) < oo
and f; (xy) > 00, V(i, j) € A, where f; (xy) and f; (x;) denote, respectively, the left and
the right directional derivative of f;; at x;;.

The e-relaxation method for solving the MCCEF problem can be viewed as a generalization
of the method proposed in [13] for the linear minimum cost flow problem. The method is
based on the satisfaction of the e-complementary slackness conditions.

Let p; be the price of node i € N. Given a scalar € > 0, we say that a flow-price vector
pair (x, p) satisfies the e-complementary slackness conditions (¢-CS for short) if and only
if

fig) —e<pi—p; < ffxp+e VG e A 3)
It can be shown that, if a feasible flow-price vector pair (x, p) satisfies €-CS, then the

cost corresponding to x is optimal within a factor proportional to € [8].
In the sequel, some terminology and computational operations are introduced.
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Definition 2.1. Given a flow distribution x, the surplus g; of a node i is the difference
between the supply s; and the net outflow from i, that is:

gi= ), W= ), Xjts “)
{j:(,hHea) {j:(i, €A}

Definition 2.2. Given a flow-price vector pair (x, p) satisfying ¢-CS, the push list L; of
node i, Vi € N, is defined as follows:

Li={(,))€/2<pi—p; — fif (xp) <€}

U{(, D) | —€ < pj — pi — [ (i) < —€/2}. &)
Definition 2.3. For each node i, the push list L; contains unblocked arcs, that is, arcs (i, j)
such that:
pi—pj = fi (i +9), ©)
or arcs (j, i) such that:
pi— pi = [ (i = 9), @)

where 3 is a given positive scalar.

Definition 2.4. Given the push list L; of node i and an unblocked arc a = (i, j) [or
a = (j, )], the flow margin of the arc a is the supremum of 8 for which the relation (6)
[or (7)] holds.

The e-relaxation method starts with a flow vector x such that x; € Cy, V(i, j) € A, and
a price vector p such that the flow-price vector pair (x, p) satisfies e-CS. At each iteration,
anode i with positive surplus (referred in the following to as active node) is selected, and
one (or more) of the two following basic operations are performed on it.

1. A price rise, which consists of increasing the price p; by the maximum amount that
maintains €-CS, whereas the flow vector x and the price p;, Vje N —{i}, are left
unchanged.

2. A flow push along an arc (i, j) [or along an arc (j, i)] that consists of increasing the
flow on arc (i, j) [or decreasing the flow on arc (j, i)] by an amount é € (0, g;], while
leaving all other flows as well as the price vector unchanged.

The typical iteration on node i is as follows.

1. (Scan the push list L;)
IfL, =0goto3.
2. (Decrease the surplus of node i)
Choose an arc a € L; and perform a 3-flow push along it, where

4 = min{g;, flow margin of a}.

If g; = 0, go to the next iteration; otherwise go to 1.
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3. (Increase the price of node i)
Execute a price rise operation on i. Go to the next iteration.

For a feasible problem, the e-relaxation method terminates in a finite number of iterations
when g; = 0, Vi € N, with a flow vector that is optimal within a factor that is proportional
to € [8].

3. The parallel e-relaxation method

This section is devoted to the description of a parallel asynchronous version of the e-
relaxation method for MCCF problem. The proposed parallel algorithm can be viewed
as an extension of the method developed for the case of linear cost function by Bertsekas
and Tsitsiklis [11], who have also demonstrated the theoretical convergence properties
(theoretical results for the linear case have also been discussed in a simpler form by Li and
Zenios in [12]).

The e-relaxation method described in the previous section presents a quite simple struc-
ture, that makes it well suited to be implemented on parallel systems.

Perhaps, the easiest way to parallelize the method consists of selecting, at each iteration,
several non-adjacent active nodes and performing the two basic operations of the sequential
method (price rise and flow push) concurrently. However, such an implementation could be
not very efficient, since the number of non-adjacent active nodes could be relatively small
in the course of the algorithm. Thus, it might not be possible to take full advantage of the
parallelization.

A much more efficient version can be obtained by allowing simultancous iterations
on adjacent active nodes. In this case, it may happen that two processors could update
simultaneously the flow value along the same arc. For this reason, in order to guarantee the
correct termination of the parallel method, some synchronization mechanisms are needed.

In the following, we describe the details of this parallel asynchronous version and we
prove its theoretical convergence properties.

Inorder to design a parallel method valid for both shared and distributed memory systems,
we refer to a theoretical computational model that consists of a set of Np processors, each
withits own local memory, that communicate through a global memory or an interconnection
network.

We assume that the computation proceeds in supersteps, each consisting of an input
phase, a computational phase, and an output phase.

In the input phase, a processor can receive information from other processors (i.e., it can
read data from the shared memory, or receive data sent to it from other processors); in the
computational phase, it performs local computation; in the output phase, it communicates
data to other processors (i.¢., by sending them through communication links or writing them
into the global memory).

For the sake of simplicity, in the sequel, we assume that each node i is assigned to a
separate processor P; (i.e., the number of available processors Np is equal to the number
of nodes n).

This makes no theoretical difference if we consider the most general case when Np < n
(in this case, more nodes have to be assigned to each processor in some way).
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The parallel asynchronous scheme for the € -relaxation method can be formally described
as follows.

Each processor P; executes the typical iteration at node i. The input and output phases
involve communication with the adjacent processors P;, Vj € F; U B;, where

F={jl @) eA}

and
B ={j| (i) e A).

At any time ¢, each processor P; holds the following values:

e p;(t): the price of node i;

e p;(i, 1): the price of node j € F; U B; communicated by P; at some earlier time;

e x;;(i, t): the estimate of the flow on the arc (i, j), j € F;, available at processor P; at
time ¢;

e x;(i, t): the estimate of the flow on the arc (j, i), j € B;, available at processor P; at
time ¢.

We assume that the price and the flow values can change only at an increasing sequence
of times o, f1, ..., tu, With t,, = co. At each time ¢, the processor P; can execute one of
the following three phases.

1. Computational Phase. P; computes the surplus g;(¢):
g= Y xi,0-— > xii,0+s:.
{j:(j.HeA} {j:(i, )eA}

If g:(¢t) > 0, then the typical iteration is executed and the following values
pi(t)v xq(la [)aJGF'la xji(i’t)vjeBi

are updated.

2. Output Phase. The values of p;(¢), x;(t), x;;(t), computed during the computational
phase, are communicated to the adjacent processors P;, j € F; U B;.

3. Input Phase. P; receives the price p;(¢') and the arc flow x;(j, ') or x;(j, '), computed
by processor P;, j € F; U B;, at some earlier time ¢’ < ¢.
On the basis of this information, P; updates p;(i, t) and x;(, ¢) if j € F;, (x;(i, 1), if
J € B)).
If p;j(t") = p; (G, 1), then p; G, 1) = p,;(t").
In addition, if j € F;, the value of x;(i, ¢) is replaced by x;(j, ¢') if

pi®) < pi) + fi (.t +€ and  x53(j, 1) < x5, 0).

In the case of j € B;, the value of x;;(i, ¢) is replaced by x;(j, ¢') if

pj(l,) > pi(H) + ﬁ?(in(j, [/)) —¢ and )Cj,'(j, [/) > in(i, 1.
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Let T* be the set of times for which the computational phase is executed by processor
P;, and let T7(j) be the set of times when P; receives new data from adjacent processors
P o ] € F; U B,;.

We make the following assumptions.

Assumption 3.1. T® and T*(j) have an infinite number of elements for all processors P;
and P;, j € F; U B;.

Assumption 3.2.  Old information is eventually purged from the system, that is, given any
time f, there exists £,, > # such that the computing time of the price and flow information

obtained at any node after ¢, (i.e, the time ¢’ in the input phase) exceeds #.

Assumption 3.3.  For each processor P;, the initial arc flow x;(i, o), j € F;, and x;(, to),
J € By, satisfy €-CS together with p;(t) and p;(i, to), j € F; U B;. Furthermore,

pilto) = pi(j, o) Vj e F;,UB,,
x5(i, t0) = x4(j, to) VjeF.

The sketch of the typical iteration of the parallel method, the updating rules and the initial
conditions imply the following properties.

1. The price sequence is monotonically nondecreasing in ¢ and
pi®) = pi(j,t"),Vj € F;UB;, 1" <t ®)
2. €-CS are locally satisfied for each node i:

fi g, 0) —€ < pi(0) — pi (6,0 < fif (g, 0) +€ VG, ), jeF

9
fii @i, 0) — € < pii, 1) = pi(O) < fif (i, D) + € V(j, i), jeB; ®

3. Processor P; stores an estimate of arc flow x;(i, 1) which is greater than or equal to the
value stored at processor P;, that is:

x(i, ) = x5(j, 1), VjeF, Vt=>t. (10)

4. There exists anode which is never processed. This follows from the fact that the surplus
of a node, once nonnegative, remains nonnegative and from (10) we obtain:

Y &) <0, Yz (11

ieN

This implies that at any time ¢, there is at least one node i with negative surplus if there
is a node with positive surplus. At this node i, processor P; must not have executed any
iteration up to ¢, and, therefore, the price p;(¢) must be equal to the initial price p;(t).
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We say that the parallel asynchronous version of the e-relaxation method terminates if
there is a time #; such that, for all ¢ > #;, we have:

g()=0 VieN, (12)
xi(i, 1) = x;(j, 1) VG, j) € A, (13)
p;j(t) = p;(i, 1) VjeF UB,. (14)

Now we are ready to show the correctness of the parallel algorithm. Our proof of conver-
gence follows the same approach proposed for the linear case by Bertsekas and Tsitsiklis
[11], by taking into account, however, the different type of cost function (convex instead of
linear).

Proposition 3.1. If the problem is feasible and Assumptions 3.1-3.3 hold, the algorithm
terminates.

Proof: Suppose no iterations are executed at any node after some time ¢*. Then Eq. (12)
must hold for large enough ¢. Because no iterations occur after ¢*, Assumption 3.1, Eq. (8),
and the updating rules defined in the input phase imply Eq. (14). Furthermore, after ¢*,
no flow estimates can change unless if new data are available. Note that the updating
rules, Eq. (10), Assumptions 3.1 and 3.2 imply the consistency of the arc flow values as in
Eq. (13).

We assume now that iterations are executed indefinately. In this case, for every ¢, there is
atime ¢’ > ¢ and anode i such that g;(¢") > 0. But this is impossible, since we observe that
the number of price increases and the number of 3-flow pushes performed by the parallel
asynchronous algorithm are bounded. This fact can be demonstrated by following the same
approach used in [8] to show the correctness of the sequential method. O

4, Parallel implementations on a shared memory multiprocessor

In this section we describe different parallel asynchronous implementations of the e-
relaxation method designed for a shared memory multiprocessor.

A key issue of the proposed parallel method is related to the partitioning and allocation
of the workload among the available processors, in such a way to guarantee a good load
balancing.

In our case, the computational workload depends on the number of active nodes, since
the method terminates when the surplus of all nodes is reduced to zero.

In principle, it is possible to consider two different allocation strategies: static and
dynamic.

Inthe firstcase, the setof nodes is partitioned into N p blocks of equal size, each containing
the same number of active nodes, using a procedure executed only once, at the beginning
of the algorithm. Each processor extracts nodes only from its private subset; consequently,
there is a reduction of the synchronitazion overhead due to access to shared data, generally,
performed through a specific mechanism such as lock. On the other hand, the main drawback
of this strategy is the impossibility to guaranteeing a priori, during the execution of the
algorithm, a good load balancing among the available processors. Indeed, following flow
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push operations other nodes become active and there is no way to ensure that their number
remains roughly the same in each block.

This limitation can be overcome by considering a dynamic node allocation strategy. The
active nodes are stored into a FIFO queue L (i.e. nodes are extracted from the top of L and
inserted at the bottom), shared among all processors. The main drawback of this strategy
is due to the synchronization overhead: a lock is used in order to guarantee that a node
could not be simultancously selected by more than one processor. Empirical computational
studies have revealed that, in the case of the e-relaxation method, the dynamic allocation
outperforms the static one [15]. For this reason, all the implementations presented in the
sequel are based on dynamic allocation strategies.

A first parallel implementation of the e-relaxation method can be easily derived from the
parallel scheme introduced in the previous section.

Each processor stores into its local memory a private flow-price vector pair on the basis
of which it executes the typical iteration of the method. Processors exchange information
through the shared memory in which the global flow-price pair, the queue L of active nodes
and a boolean variable flag are stored. At the beginning, each processor reads from the
shared memory an initial flow-price vector pair computed in such a way that €-CS are
satisfied. The computation starts with the extraction of a node i from the queue L and
proceeds with the execution of the basic operations on the extracted node (computational
phase).

Once the surplus of node i is reduced to zero, the processor writes the new flow and
price values into the shared memory (output phase) and warns the adjacent processors of
their availability, by using the flag. Then, each processor gets the new data and, eventually,
updates the local flow-price vector pair according to the rules defined in the input phase.

The main drawback of the proposed parallel algorithm, when implemented on a shared
memory multiprocessor, is that the shared memory is not exploited in the most efficient
way: data are copied from the main memory into the local ones, and viceversa.

More efficient implementations can be defined by using the main memory in a more
appropriate way, by avoiding the use of local copies and maintaining only a global flow-
price vector pair, shared among all processors.

Following this approach, we have considered two different parallel implementations of
the asynchronous e-relaxation method, that differ in the way of organizing the queue of
active nodes. More specifically, our implementations are as follows.

o Single Queue Implementation. The active nodes are stored in a single queue L shared
among all processors. Each processors P; selects the active node i from L, computes the
surplus of the node, stores its value in a local variable o and executes the basic opera-
tions until o is reduced to zero. This implementation allows the eventual simultanecous
selection of adjacent nodes by two processors. This means that the flow values along
the arcs betweeen the two nodes could be updated in a non-predeterminated order and,
consequently, the value of o could be not consistent with the current flow distribution.

For this reason, in order to guarantee the correct termination of the algorithm, when the
queue L is found empty by all the processors, it is necessary to compute again the surplus
of all the nodes (check phase) and, eventually, restart the computation if the optimality
conditions are not satisfied at some nodes.
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e Multiple Queues Implementation. In this implementation, the active nodes are organized
in multiple queues, that is, there is a separate queue for each processor. Each processor
extracts nodes from its own queue and uses a heuristic procedure for choosing the queue
into which eventually insert nodes that become active, after a 5-flow push operation.
The queue chosen is the one with the minimum current value of the number of nodes
already inserted into the queue. The heuristic is easy to implement and ensures a good
load balancing among the processors.

The multiple queues implementation guarantees much less contention for queue access
than the case of a single queue (we reduce the probability that more processors attempt
to simultaneously insert a node into the same queue).

In this case, we note that the termination condition is detected in a slight different
way from the single queue implementation. When a processor finds its queue empty, it
switches in an idle state and, eventually, reawakens when a node is added to its queue.
When the idle condition is reached by all processors (this situation is detected by using
specific procedures, see for more details [15], a check phase is performed, in order to
verify that the optimality conditions are satisfied by all the nodes.

We observe that both the proposed parallel implementations find the optimal solution in
a finite number of iterations (the updating rules introduced in the algorithm guarantee that
the €-CS are satisfied at each iteration).

It is worth observing that the procedure used in our parallel algorithms for the current
updating of price and flow vector resembles the computational scheme used in the paral-
lel relaxation algorithms of Chajakis and Zenios [14]. However, our implementations are
substantially different from the relaxation method, not only for the fact that Chajakis and
Zenios have examined the case of strictly convex cost function (quadratic in the numerical
experiments). We cite, for example, that Chajakis and Zenios adopted a static node allo-
cation procedure to split the workload among the processors, whereas we use a dynamic
allocation, and, consequently, any asynchronous updating operation has been re-designed
(in some sense, our method is much more “chaotic™).

5. Computational experiments

Itis well known that the theoretical and the practical performance of the € -relaxation method
can be improved by using the e-scaling technique, which was first introduced for the linear
minimum cost flow problem in [16] and [17].

The key idea of the e-scaling technique is to apply the e-relaxation method several times,
starting with a large value of € and reduce it up to a final value corresponding to the
desiderable degree of solution accuracy.

Each application of the algorithm, called the scaling phase, provides good initial prices
and flows for the next phase.

In our implementations, the sequence {¢ ®} is defined by

e® =9V k=12, ...

where € (starting € value) and 6 € (0, 1) (scaling factor) are chosen by the user.
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For our testing, we have considered convex linear/quadratic problems with cost function
defined as follows:

2 .
aixi; + b,]x,] if 0 < Xij < Ui

Jilxy) = {oo

otherwise

and we have chosen 6 = 0.5 and €@ = maxy, jyea aj + 2Dy

We have considered scaled versions of the algorithm. All the issues introduced for the
unscaled versions can be also used for the corresponding scaled counterparts, without loss
of efficiency. )

We choose to terminate the algorithms at the scaling phase & such that ¢® < 1071,

The computational experiments have been carried out on two different sets of test prob-
lems, for which the percentage of arcs with quadratic costs is equal to fifty percent of the
total number of arcs, and the remaining arcs have linear cost. All the problems have been
generated by using the public domain NETGEN generator [18].

The first set (referred to as medium scale test problems) consists of twelve test prob-
lems, belonging to the suite designed by Klingman and Mote [18]. The corresponding
classification number and the main characteristics are reported in Table 1.

The second set (referred to as large scale test problems) consists of eight larger problems,
having 5,000 and 10,000 nodes, with different number of arcs (Table 2).

For all test problems the arc cost is chosen randomly, according to a uniform distribution,
within the range [1, 100], and the arc capacity in the range [1, 1000].

The parallel algorithms have been implemented and tested by using an Origin 2000, a
multiprocessor consisting of 4 nodes, each with a memory of 128 MB. Each node consists
of two processors R10000 at 195 MHz, with a4 MB cache memory and a hub device, which
carries out duties similarly to a bus in a bus-based system. The nodes are connected by two
routers.

Tuble 1. Medium scale test problems.

Problem Nodes Arcs Sources Sinks Tsurplus
101 5,000 25,000 2,500 2,500 250,000
102 5,000 25,000 2,500 2,500 2,500,000
103 5,000 25,000 2,500 2,500 6,250,000
107 5,000 37,500 2,500 2,500 375,000
108 5,000 50,000 2,500 2,500 500,000
109 5,000 75,000 2,500 2,500 750,000
111 5,000 35,500 2,500 2,500 250,000
112 5,000 50,000 2,500 2,500 250,000
113 5,000 75,000 2,500 2,500 250,000
123 5,000 25,000 500 500 250,000
124 5,000 25,000 1,000 1,000 250,000
125 5,000 25,000 1,500 1,500 250,000
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Tuble 2. Large scale test problems.

Problem Nodes Arcs Sources Sinks Tsurplus

L1 5,000 200,000 2,500 2,500 500,000
L2 10,000 200,000 5,000 5,000 1,000,000
L3 5,000 400,000 2,500 2,500 500,000
L4 10,000 400,000 5,000 5,000 1,000,000
L5 5,000 600,000 2,500 2,500 500,000
L6 10,000 600,000 5,000 5,000 1,000,000
L7 5,000 800,000 2,500 2,500 500,000
L8 10,000 800,000 5,000 5,000 1,000,000

The main feature of this system is that the hardware allows the physical distributed
memory of the system to be shared, just as in a bus-based system, but since each hub is
connected to its local memory, the bandwith is proportional to the number of nodes, and
$0, there is no inherent limit to the number of processors that can be effectively used in
the system. On the other hand, the main drawback of this parallel system is related to the
access time to memory. Indeed, it is no longer uniform: it varies depending on how far
away the memory being accessed is in the system. So, while two processors in each node
have quick access to their local memory through their hub, accessing remote memories by
additional hubs adds an extra time overhead.

The operating system used is IRIX 6.4, whereas the compiler is the £77.

The performance of the parallel implementations has been evaluated by measuring the
average execution times, obtained over 5 runs, as a function of the number of processors.

Tables 3, 4 and Tables 5, 6 report the results for the single queue (SQ for short) and the
multiple queues implementation (MQ for short), respectively.

Tuble 3. Average execution time (in secs) required by the SQ implementation for the medium scale test problem.

Problem Seq 2-Proc 4-Proc 8-Proc
101 333.69 230.13 128.34 66.47
102 456.97 302.63 159.78 85.26
103 525.69 318.60 174.07 95.75
107 411.41 304.75 158.23 90.22
108 496.10 359.49 187.92 107.15
109 509.36 363.83 191.49 106.34
111 354.29 266.38 157.46 80.16
112 367.10 269.93 152.96 82.13
113 431.45 303.20 167.24 91.22
123 249.16 190.20 103.39 57.81
124 291.54 217.57 115.69 62.43
125 301.72 226.86 115.60 63.79
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Tuble 4. Average execution time (in secs) required by the MQ implementation for the medium scale test problem.

Problem Seq 2-Proc 4-Proc 8-Proc
101 333.69 222.46 119.18 65.17
102 456.97 295.61 151.82 82.78
103 525.69 311.68 153.71 89.25
107 411.41 293.86 152.37 85.53
108 496.10 346.92 181.72 100.83
109 509.36 351.28 184.55 102.28
111 354.29 256.73 150.76 76.69
112 367.10 262.21 146.84 78.27
113 431.45 294.72 161.48 87.62
123 249.16 184.56 99.27 55.12
124 291.54 211.26 110.85 61.38
125 301.72 209.53 110.93 62.60

Tuble 5. Average execution time (in secs) required by the SO implementation for the large scale test problem.

Problem Seq 2-Proc 4-Proc 8-Proc
L1 585.67 385.31 196.53 117.60
L2 1743.24 1131.97 579.15 347.26
L3 793.93 508.93 254.46 155.67
L4 1862.67 1164.17 585.75 34947
L5 998.67 608.94 310.15 183.91
L6 2314.22 1377.51 712.07 408.15
L7 1374.26 808.39 411.46 233.32
L8 3299.17 1896.07 970.34 548.95

Tuble 6. Average execution time (in secs) required by the MQ implementation for the large scale test problem.

Problem Seq 2-Proc 4-Proc 8-Proc
L1 585.67 370.68 187.71 99.77
L2 1743.24 1089.52 544.76 290.06
L3 793.93 484.10 244.29 129.52
L4 1862.67 1089.28 564.44 299.95
L5 998.67 567.43 294.59 157.77
L6 2314.22 1285.96 670.79 343.36
L7 1374.26 750.96 392.64 199.75
L8 3299.17 1745.59 906.36 447.04
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In order to evaluate the performance of the proposed parallel version of the
e-relaxation method, we have measured the speedup value computed as the average sequen-
tial execution time over the average multiple-processors execution time (see figures 1-4).

We observe that the speedup values are not proportional to the number of processors used.
More specifically, the average speedup values are 1.49, 2.82, 5,02 on 2, 4 and 8 processors,
respectively for the SQ implementation, and 1.56, 2.98, 5.55 on 2, 4 and 8 processors for
the MQ implementation.

This numerical behaviour can be explained by different reasons: (a) during the last scaling
phases, the number of nodes with surplus greater than the user-defined threshold decreases.
Thus, some processors can remain in an idle state and, consequently, we have a loss of
efficiency; (b) the non-uniform access to memories. This affects the performance of the
method, especially when the number of processors is increased; (¢) the synchronitazion
overhead due to access with locking of the common data structure. It penalizes, in partic-
ular, the SQ implementation as confirmed by comparing the results obtained with the MQ
implementation (see Tables 4 and 6). In this case, each processor extracts nodes from its
private queue and eventually inserts nodes into another queue, chosen by using a heuristic
procedure. In the SQ implementation the locking data access is used by all processors for
the same queue.

Other interesting considerations can be drawn by observing that the performance of the
parallel implementations strongly depends on the characteristics of the test problems.

In particular, we note that better speedup is achieved for the test problems with higher
values of total surplus (see, problems 101, 102 and 103 of figures 1 and 2 and problems L7
and L8 of figures 3 and 4). This behavior can be explained by observing that the higher the

| 2 Proc B84 Proc B8 Procl

101 102 103 107 . 108 109 111 112 113 123 124 125

Figure 1. Speedup values of the SQ implementation for the medium scale problems.
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2 Proc E14 Proc B8 Proc

101 - 102 - 103 107 108 - 109 - 111 112 113 123 ~ 124~ 125

Figure 2. Speedup values of the MQ implementation for the medium scale problems.

2 Proc B4 Proc

Figure 3. Speedup values of the SQ implementation for the large scale test problems.
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2 Proc 4 Proc B8 Proc

Figure 4. Speedup values of the MQ implementation for the large scale test problems.

surplus of a node, the larger the number of basic operations performed in order to obtain an
optimal flow distribution.

Furthermore, when we increase the number of source nodes (see problems 123, 124 and
125 of figures 1 and 2) the efficiency of the parallel algorithms improves, since a higher
computational workload is assigned to each processor.

Finally, we note that the best results have been obtained for the large-scale test problems
(average speedup of 6.41 on 8 processors, 3.35 on 4 and 1.65 on 2). This underscores the
importance of the parallelism for solving efficiently very large test problems, otherwise
unmanageable, from a computational point of view, when using conventional platform.

6. Conclusions

In this paper we have presented a parallel e-relaxation method for solving the separable
convex cost network flow problem.

The method exploits the idea of extracting simultaneously and in a non-predetermined or-
der several active nodes and executing asynchronously the basic operations of the sequential
method.

The finite convergence of the method has been discussed with reference to a theoretical
computing model which includes both the shared and the distributed memory parallel
computing systems.

Two versions of the method have been implemented on a non-uniform memory access
parallel computer composed of 8 processors. The two versions differ only in the number
of queues used for storing the active nodes (one queue versus multiple queues).
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The results collected on a different variety of standard test problems show that, with
respect to the sequential counterpart, the multiple queue implementation is the most prefer-
able and significant speedup values are obtained for the large scale problems, which are
generally hard to solve by using the sequential method.
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